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  The Not-Quite-So-Simple Operation of ‘The World’s Simplest Motor’ 
 
  M. P. Silverman 
 
 [Adapted from a paper submitted to The Physics Teacher (2008)]   

 

     What wondrous new machines have late been spinning. 
      —Lord George Gordon Byron, Don Juan (1819) 
 

 

  Summary 

A simple motor, which I discovered on YouTube, can be constructed in a few minutes 
with an AA battery, a small, but strong, cylindrical rare-earth magnet, and a short 
(~16 cm) length of narrow-gauge copper wire.  Shaped appropriately, the wire will 
rotate spontaneously about the battery.  I discuss quantitatively the salient electro-
mechanical principles underlying how this motor works and address a number of 
fundamental, but subtle, conceptual issues that this device raises. 
 
 

The World’s Simplest Motor 

 One can find almost anything on YouTube, 
including novel physics demonstrations.  It was there, in fact, 
where I first saw what was referred to as ‘the simplest motor 
in the world’1.   Subsequently I made my own model, and it 
was indeed simple.  I placed a 1.5 volt AA battery on a small 
toroidal neodymium magnet pedestal, bent a copper wire into 
a more-or-less rectangular frame with a “pinch” at the center 
of the top to serve as a pivot, and placed the frame on the top 
terminal of the battery with the lower ends of the frame 
shaped so as to slide along the cylindrical surface of the 
magnet, as schematically illustrated in Figure 1.  The wire 
frame immediately began spinning around the axis of the 
battery. At the first few trials, the frame spun for a few 
moments, then gyrated off the battery.  However, when 
adjusted better, the frame spun for long periods of time at a 
uniform angular frequency.  Watching it for the first time or 
even after many times, I was fascinated by how so simple a 
construction gave rise to so striking an effect. 
 
 Although simple to make, the operation of this motor 
raises questions that are not necessarily simple at all as they 
entail various fundamental principles of both 
electromagnetism and mechanics.  Why does the frame spin?  
In which sense (clockwise or counterclockwise) does it spin?  

                                                
1 ‘Simplest Motor of the World’, http://www.youtube.com/watch?v=zOdboRYf1hM. 
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Why does the rotational angular frequency reach a steady state?  What relation describes how the 
spin builds up to a steady state?  Why isn’t the battery shorted out when its terminals are 
connected by a copper wire whose electrical resistance is virtually negligible?     
 
 And what about Faraday’s law of induction—does it apply here?  In textbook diagrams 
showing the operation of a standard motor as the rotation of a flat wire loop between the poles of 
a dipole magnet, the axis of the loop is perpendicular to the magnetic field lines, with the 
consequence that there is a time-varying magnetic flux through the surface of the loop.  The 
toroidal neodymium magnet is also a dipole, but the construction of the ‘simplest motor’ is such 
that the dipole axis ideally coincides with the axis of rotation so that the magnetic field lines are 
cylindrically symmetric about the battery and always lie in the plane of the wire frame 
irrespective of its angular orientation.   [Recall that the magnetic field at any point r, except at the 

origin r = 0 , due to a dipole moment m is given by the expression B =
µ0
4!r5

3r r "m( )# r2m$% &'  

where µ0  is the permeability of free space.]  So...can there be any variation in magnetic flux 
through the frame as the frame spins?   And if not, is Faraday’s law not applicable here? 
 
 Simple toys and curious phenomena readily observed at home often provide an attention-
arresting starting point for exploration of fundamental physical principles in the classroom.2 I 
now address these questions. 
 
 
Forces and Torques—A First Look 

 Figure 2 shows a schematic diagram of the 
circuit corresponding to the physical model in Figure 1 
in the ideal case of a perfectly symmetric frame (length 
 ! , radius r) spinning about the axis of a battery of 
potential V and internal resistance Ri  oriented with 
positive terminal up. The cylindrical magnetic pedestal is 
oriented with the north magnetic pole up.  The poles of 
the magnet were not marked.  To determine the polarity, 
I used a compass needle.  Recall that the north pole of a 
magnet is the pole that points north.  Thus, the pole to 
which the north end of a compass needle is attracted is a 
south pole.   
 
 The circuit is pictured in its rest frame where I 
have chosen a coordinate system with horizontal x-axis, 
vertical z-axis, and the y-axis directed into the page.  A 
current 2i is drawn from the positive terminal, splits 
equally so that i passes through each arm of the frame, 
then recombines at the negative terminal.  The internal 
resistance of a battery arises from both electronic and 
ionic contributions and generally varies with battery age, 

                                                
2 M. P. Silverman, And Yet It Moves:  Strange Systems and Subtle Questions in Physics (Cambridge 
University Press, Cambridge, 1993) 
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load, and environmental conditions.3  For a fresh battery, it can be in the vicinity of a few tenths 
of an ohm to an ohm.  In contrast, the electrical resistance of a short length (~10 cm), 20-gauge 
(diameter ~ 1 mm) copper wire of resistivity ~17 n!m  is a few thousandths of an ohm.  I will 
neglect hereafter the resistance of the copper wire. 
 
 The contribution dF to the magnetic force on a directed segment dl bearing current i is 
dF = idl !B .  The dipole field B has components Bx  and Bz , but only the horizontal component 
Bx  contributes to the force on a vertical current segment idz . With the north pole of the 
neodymium magnet oriented upward, Bx is directed along +x at the right wire and along –x at the 
left wire (as shown in Figure 1).  From the right-hand rule associated with the cross product in the 
force law, it follows that the force on the right wire is directed along –y, and the force on the left 
wire is directed along +y.  Since the two forces do not act at the same point, they produce a torque  
(directed along –z) causing the frame to rotate clockwise (cw) as viewed from above the 
apparatus. In the motor that I made, the horizontal current segments of length r are sufficiently 
short that I will neglect forces on or by them.  However, it is easy to show from the above force 
law that the right and left horizontal currents likewise experience forces into and out of the page, 
respectively. 
 
 I will determine the magnitude of the torque shortly, but first let us consider the potentials 
within the circuit. 
 
 
Induced EMF 

 According to Kirchhoff’s voltage law, the potential changes around a closed loop must 
sum to zero, an expression of the law of conservation of energy in the electrical domain. 
Kirchhoff’s voltage law is not valid, however, if there is a time-varying magnetic flux through the 
circuit as would be the case, for example, if the circuit in Figure 2 encompassed an ac current-
bearing solenoid oriented perpendicular to the page.  This exclusion does not apply to the circuit 
of Figure 2 because of the symmetrical distribution of the magnetic field lines, which have no 
component perpendicular to the surface enclosed by the circuit in its rest frame.  It would be a 
mistake to think, however, that the only two contributions to this sum in the present case are the 
rise in potential V between the negative and positive terminals of the battery and the 
corresponding drop in potential 2iRi .   
 
 Consider a positive test charge q located in the right vertical wire as shown in Figure 2.  
The instantaneous velocity v of that charge is directed out of the page with a magnitude v =!r , 
since the frame is rotating cw with angular frequency ! .  (In reality, the charge may also have a 
drift velocity within the wire, but this can be neglected compared with the macroscopic motion of 
the wire carrying the charge.)  Thus, the charge is subjected to a Lorentz magnetic force 
Fq = qv !B , directed upward along the vertical wire, thereby giving rise to an induced emf  (i.e. 
work done per unit of charge transported over a specified distance) 
 

  
  
Eind = Fq q( ) !dl

0

!

" = v #B !dl
0

!

" = $%r Bx dz
0

!

" = $%r!Bx  (1) 

                                                
I Internal resistance and other characteristics of batteries, are discussed in I. Buchman, Batteries in a 
Portable World 2nd edition, self-published online: http://www.buchmann.ca/Chap9-page3.asp. 
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that drives charge in a sense opposite to that of the battery.   In the last relation of Eq. (1) I 
defined the vertically-averaged x-component of the magnetic field 
 

  
 
Bx =

1
!

Bx dz
0

!

! , (2) 

 
which is an experimentally convenient quantity.  Proceeding in the same way, one obtains an emf 
of the same magnitude and polarity in the left vertical wire. 
 
 Application of Kirchhoff’s voltage law to the right (or left) current loop yields the 
relation 
   V ! 2iRi ! Eind = 0  (3) 
 
 from which follows the current 
 

  
  
i =

V ! Eind

2Ri
=
V !"r!Bx

2Ri
. (4) 

 
It is now clearer from Eq. (4) why the battery is not shorted out when its terminals are connected 
by a spinning wire frame.  The faster the frame rotates, the larger will be the induced emf, and the 
smaller will be the current (2i) drawn from the battery.  Were the frame to rotate close to its 
theoretical limit, the current drawn from the battery would be close to zero.  I will consider 
shortly how fast the frame can rotate.   
 
 In concluding this section, I address briefly the fundamental question of whether 
Faraday’s law of induction has a role to play in producing the induced emf.   According to the 
form of the law ordinarily displayed (in SI units) in textbooks,  
 

  
 
E = !

d"
dt

,  (5) 

 
an emf is induced in a circuit by the time-variation of magnetic flux !  through the circuit.  
Ostensibly it would seem that there is no time-varying magnetic flux through the planar surface 
of the wire frame in the ‘simplest motor’.  This is correct.  However, when the frame is spinning, 
each vertical wire sweeps out a differentially small surface area  dS = !r!dt  in the time interval 
dt , to which the field Bx  is perpendicular.  Thus there is a differential change in magnetic flux 
d! = BxdS  resulting in an induced emf of magnitude  d! / dt = BxdS / dt ="!rBx .  Although it is 
beyond the scope of this paper to demonstrate, the application of Faraday’s law to a circuit with a 
moving boundary, as in the present case, leads to two terms:  one is equivalent to the time 
variation of the magnetic field perpendicular to a surface area; the other is equivalent to the 
Lorentz force law.4   In the case of our model of the ‘simplest motor’, the first term vanishes 
because the magnetic field is time-independent, and the second term remains.  Both contributions, 
however, are a consequence of Faraday’s law, Eq. (5). 

                                                
4 P. Lorrain and D. Corson, Electromagnetic Fields and Waves 2nd Ed. (Freeman, San Francisco, 1970) pp. 
339-341. 
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  Feynman has remarked in his famous Lectures upon the phenomenon of induction as 
conceptually unique.   
 

‘I know of no other place in physics where such a simple and accurate 
general principle requires for its real understanding an analysis in terms 
of two different phenomena.’5  

 
The italics are Feynman’s.  The two different phenomena to which he referred are described by 
the Lorentz force law and Faraday’s law of induction.  It is somewhat difficult to know what to 
make of Feynman’s assertion, for, as the originator of his own form of electrodynamics, he of all 
people must have been thoroughly conversant with a phenomenon as basic as induction.  
Nevertheless, Feynman has been wrong before in matters relating to electrodynamics (for 
example, the case of the Aharonov-Bohm effect in quantum mechanics, in which a magnetic field 
can affect the quantum interference pattern of a beam of charged particles that does not pass 
through the magnetic field)6, and I believe that his characterization of the situation is not correct 
in the present instance.  It is not the case that one must account for induction in terms of two 
different phenomena.   Both are a consequence of Faraday’s law. 
 
 
Torque and Power—A Second Look 
 
 Torque is the first moment of a force—i.e. the cross product of a moment arm and a 
force.  The torque Nmag  arising from the horizontal magnetic forces on the two vertical arms of 
the frame can be calculated from the expression 
 
  Nmag = 2 R ! dF = 2i R ! dl !B( )""  (6) 

 
in which R is the coordinate vector of a point on the right vertical wire (the left side having been 
accounted for by the factor 2) defined with respect to an arbitrarily chosen origin at the center of 
the neodymium magnet.  It is not difficult to evaluate the integral in Eq. (6), but it is simpler7 and 
more useful to evaluate the scalar product of the torque with the angular velocity ! , which is 
directed along –z, and thereby obtain the rate at which electrical energy is expended in rotating 
the wire frame 
  

  
Prot = ! "Nmag = 2i!r!Bx = 2i Eind . (7) 

 
The rotational power thus turns out to be the product of the total current drawn from the battery 
and the induced emf. 
 

                                                
5 R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, 
1964) Vol II, page 17-2. 
6 M. P. Silverman, More Than One Mystery: Quantum Interference with Correlated Charged Particles and 
Magnetic Fields; American Journal of Physics 61 (1993) 514-523; M. P. Silverman, Quantum 
Superposition:  Counterintuitive Consequences of Coherence, Entanglement, and Interference (Springer, 
NY, 2008), pp 16-17. 
7 There are two reasons why calculating the power is simpler:  (1) The scalar product with the angular 
velocity projects out only the vertical component of the torque, and (2) one can use the familiar vector 
identity A !B " C " D( ) = A !C( ) B !D( )# A !D( ) B !C( )  in evaluating the resulting integral.  Note that the 
x-component of R is the constant length r. 
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 With the foregoing result, I can check to see whether electrical energy is conserved in the 
circuit.  The electrical power expended in rotation together with the power dissipated as Joule 
heating must sum to the power PE  provided by the battery   
 
  PE = Prot + (2i)

2Ri . (8) 
 
Upon substituting PE = 2iV  and   Prot = 2i Eind = 2i!r!Bx  into Eq. (8) and dividing both sides of 
the equation by 2i, one regains the Kirchhoff voltage relation of Eq. (3).  Thus, electrical energy 
is conserved. 
 
 However, there is still a loose end to tie.  Just as the net force on an object will accelerate 
the object, thereby continuously increasing its velocity, the application of an unbalanced torque to 
the wire frame would result in a continuously increasing angular velocity.  This does not happen 
because friction between the lower ends of the spinning frame and the cylindrical surface of the 
magnet results in a net counter-torque of approximate magnitude 
 
  Nf = 2 frM  (9) 
 
 where f is the force of friction and rM  is the radius of the magnet.  The equation of motion of the 
wire frame is then given by Newton’s 2nd law applied to rotation 
 

  
 
Iz
d!
dt

= Nmag " Nf = 2ir!Bx " 2 frM  (10) 

 
in which Iz  is the moment of inertia of the wire frame along the z-axis, and f is independent of 
the relative speed between surfaces (and therefore independent of ! ).    Upon replacing the 
current i by the equivalent expression in Eq. (4), I can recast Eq. (10) in terms of the single 
variable, angular frequency !  

  
d!
dt

+"! = #  (11) 

with constants 

  
 
! =

r!Bx( )2
IzRi

 (12) 

 

  
 
! =

r!BxV
IzRi

"
2 frM
Iz

. (13) 

 
As a dimensional check of consistency, one can verify that α has the dimension of (time)-1 and 
that β has the dimension of (time)-2, in keeping with the dimension of d! / dt . 
   
 Equation (11) is a simple first-order linear differential equation of the kind ordinarily 
encountered in introductory physics courses (e.g. in the treatment of RC circuits).  The solution 
for a rotor starting at rest at time t = 0 is 
 

  ! t( ) = "
#
1$ e$#t( ) . (14) 
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Thus, !"1  is a characteristic time constant (relaxation time) !  of the system and ! /"  is the 
asymptotic (or steady-state) angular frequency !" .  Theoretically !  reaches !"  after an infinite 
amount of time, but practically only a few time constants !  suffice.  
 
 Instead of using Eq. (4) to eliminate i from Eq. (10), I can use Eq (1) to eliminate! , 
thereby obtaining the following equation for time development of the current 
 

  
di
dt

+
i
!
=
if
!

 (15) 

 
in which  

  

 

! =
IzRi
r!Bx( )2

 (16) 

 
is the system relaxation time identified previously, and  
 

  
 
if =

rM
r

f
!Bx

 (17) 

 
is a combination of system parameters with the dimension of electric current. if  is, in fact, the 
frictionally-limited asymptotic current, as seen from the solution corresponding to Eq. (14) 
 
  i t( ) = if 1! e! t /"( ) . (18) 
 
The steady-state angular frequency !"  and current if  are related to one another through the 
expression 
 

  
 
!" =

1
r!Bx

V # 2Riif( ) , (19) 

 
whose form is seen to be a rearrangement of Kirchhoff’s voltage law. 
 
 
Numerical Details of My Own ‘Simplest Motor’ 

 The motor that I put together in a few minutes had the following approximate 
dimensions:  2r = 2.3 cm,  !  = 6.0 cm , 2rM = 2.0 cm.  The mass of each arm of the wire frame 
was about 268 mg, leading to an estimated moment of inertia Iz = 7.1!10"8  kg #m2 .   [Treating 
the wire frame as two vertical arms of length  !  connected by a top crosspiece of length 2r leads 

to 
 
Iz = mr

2 1+ r
3!

!
"#

$
%&
~ mr2  where m is the mass of the frame.]  Using a gauss meter to sample the 

magnetic field along a vertical arm, I estimated Bx  at ~ 0.2 Tesla.    
 
 I used a moderately fresh AA battery with open-circuit potential measured to be V = 
1.501 V and internal resistance measured to be Ri  = 1.324 !  before introduction of the wire 
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frame. A standard procedure for measuring the internal resistance Ri  of a battery with a 
voltmeter is to measure first the open-circuit potential V0  and then the potential V when the 
battery is part of a single-loop circuit containing a known resistance R.  It is then straightforward 
to show that Ri = R V0 V( )!1"# $% .   The resistance R should not be too large (whereupon too small 
a current will be drawn) or too low (in which case too high a current will be drawn and the battery 
will heat up rapidly or even short out).   
 
 With the motor assembled, the frame spun stably for long periods of time, and I 
determined the mean frequency of several trials to be 4.71 Hz by placing a small paper flag on 
one arm and recording approximately 10 seconds of action with a Canon SD450 digital camera.  
The camera timer recorded the duration of action precisely, and, by viewing the recording in the 
slow-playback mode, I could count precisely the number of rotations of the flag.   The operating 
frequency, controlled by friction, is low compared with the maximum steady-state frequency 
[from Eq. (14) or (19) of  !" 2# $V 2#r!Bx  ~ 1731 Hz in the absence of friction. 
 
 From Eq. (1) I determined the induced emf to be  Eind  = 4.09 mV, from which it followed 
from Eq. (4) that if  = 565 mA.   The relaxation time of the motor circuit was determined from 
Eq. (16) to be !  = 4.9 s.  This value is a little high, a consequence, I have ascertained, of the 
change in battery potential and internal resistance during its service to the motor.  Measurements 
of the open-circuit potential and internal resistance immediately following the end of each 
recording session yielded the lower values 1.482 V and 0.663 ! , respectively.   Substituted into 
Eq. (16), the lower resistance leads to a shorter and more realistic relaxation time of 2.5 s.   
Finally, from Eq. (17), I estimated the frictional force at each end of the wire frame to be 
f ~ 7.7 !10"3  N to within a factor of 2 given the variability in battery operating conditions.   

 

 
Concluding Remarks 

 The ‘simplest motor in the world’ is an example of a free induction motor, operating in 
accordance with Faraday’s law (as all motors do) under the somewhat unusual condition of an 
unconstrained rotational axis.   For a motor with specified geometrical parameters and magnetic 
field, the time for the rotor to spin up to its steady-state value is controlled by the internal 
resistance of the battery, an electrical quantity that can vary during operation of the motor.  The 
achievable steady-state frequency, given the same geometry and magnet, is controlled by the 
internal resistance of the battery and sliding friction between the wire frame and magnet.  The 
lower the friction and internal resistance, the shorter the relaxation time and higher the steady-
state frequency. 
 
 Watching the frame rotate around the neodymium magnet, an inquisitive person might 
wonder what would happen if the frame and battery were held fixed but the magnet were 
sufficiently lightweight and free to turn.  Would it (the magnet) rotate?  The answer to this 
question, although deducible immediately from the principle of relativity, is provided in a 
dramatic fashion by another of the fascinating physics toys I have encountered over the years, and 
which I usually demonstrate whenever I teach courses on electromagnetism. It is marketed by 
Andrews Manufacturing under the name Top Secret.8  The toy comprises a black plastic pedestal 
about 8 centimeters in diameter upon which a silver top can be made to spin practically 

                                                
8 “Cool Magnetic Toys You Can Buy”, http://www.coolmagnetman.com/magemtoy.htm 
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interminably (i.e. for days).  There is no apparent source of external energy.  I will not give away 
the secret here, except to point out (what any alert experimenter would deduce and confirm 
quickly) that the spinning top is a cylindrical magnet.   
 


