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  Voice of the Dragon:  Harmonies of the Rotating Resonator 
 
  M. P. Silverman 
 
[Adapted from a chapter in M. P. Silverman, Waves and Grains:  Reflections on Light and Learning 
(Princeton University Press, 1998), initially published, together with my student Mark Cushman, in the 
European Journal of Physics 1989.] 
 

The isle is full of noises, 
Sounds and sweet airs that give delight and hurt not. 
  —William Shakespeare (The Tempest) 

 
 
 Summary 
 
 A simple, yet unusual, child's toy, in effect a rotating corrugated resonator, 
generates a wide range of tones by spatial modulation of air flow, and illustrates some of 
the most basic features of the physics of resonance, waves, and fluids.  I encountered the 
toy when living in Japan with my family and brought some specimens to my laboratory to 
examine and work out the mechanism of sound production.   Although production of sound 
and electromagnetic waves is quite different in detail, the toy calls to mind an equally 
unusual light source.   
    
 
‘Hearing’ the Light 
 
 One of the most remarkable light sources I ever learned of was reported in one of the shortest 
scientific papers1 I ever read:  less than a single page in The Physical Review (a sizable fraction of which 
was a photograph).    
 
 The opening line of the paper  
 

It occurred to one of the authors (EMP) that if an electron 
passes close to the surface of a metal diffraction grating, 
moving at right angles to the rulings, the periodic motion of 
the charge induced on the surface of the grating should give 
rise to radiation.   

 
reveals in its entirety Purcell's clever idea: charged particles moving at a constant velocity can give rise to 
electromagnetic radiation.   Recall that Maxwell’s classical theory of electromagnetism predicts that 
radiation is produced by accelerating electric charge.   However, passing at speed v close to the 
corrugated surface of a metal diffraction grating with ruling interval d, individual electrons of an electron 
beam generate image charges that effectively oscillate normal to the grating surface, as illustrated in 
Figure  1.  In complete conformity with classical electrodynamics, the oscillating image charges should 
radiate—and a simple Huygens construction predicts the fundamental wavelength to be 
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1 S. J. Smith and E. M. Purcell, “Visible Light from Localized Surface Charges Moving Across a Grating”, The 
Physical Review 92 (1953) 1069. 
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where θ is the angle of observation relative to the 
forward direction of the beam.  For a grating with 
spacing d = 1.7 µm and electrons of energy 300 keV, 
the predicted radiation falls within the visible 
spectrum.   
 
 Using a small Van de Graaf generator, Smith 
and Purcell found that, like ‘real’ charges, accelerated 
image charges do indeed produce light.  Viewing 
their grating from a forward position 10 to 20 degrees 
from the beam, they saw a ‘sharp, luminous, colored 
line on the surface of the grating’ whose color varied, 
as expected, with the observation angle and electron 
energy. 
 
 The authors, as far as I know, never resumed this work—or at least never reported on it again.  
And when, having discovered this paper some fifteen years or so after its publication, I endeavoured to 
know more, a dip into the physics literature then available to me produced but a paltry harvest of 
references.  Even today, when on some rare occasion I mention Smith-Purcell (SP) radiation to a 
colleague, the latter is more likely than not to look at me quizzically.  Within the physics community at 
large, the SP light source still seems to be a fairly well-kept secret.   
 
 I had intended at one time to develop a quantum theory of SP radiation, but, as one project led to 
another, I continually put off the undertaking, eventually dropping the subject altogether.   I never 
returned to it, but many years later I came across a fascinating device that brought this early interest to 
mind. 
 
 One day, while living in Japan as a guest scientist of the Hitachi Advanced Research Laboratory 
in Tokyo, I emerged with my family from a train station to encounter the eerie strains of a most unearthly 
symphony.   A dozen or so Japanese children, soon joined by my own, were feverishly grabbing long 
flexible plastic tubes from the stand of a streetside vendor and twirling them above their heads like lariats.  
The burst of tones that emerged from each musical pipe soared and dropped with rotational speed over 
what seemed like a good portion of the range of a flute. 
 
 Designated Voice of the Dragon by a sign in English, each musical tube was basically a right 
circular cylinder roughly 3 cm in outside diameter and 70 cm in length.  The tubes, however, were not 
smooth; rather, corrugations with a depth of about 1/4 cm and a periodicity of 2 per cm spanned the full 
length.  The overall effect of this loud, wavering, rich-toned chorus of dragon voices left an unforgettable 
impression.   
 
 Despite the outward simplicity of the toy, the details of how it worked were by no means evident.  
Watching the dragon in action, I puzzled over such questions as the following.  Are the characteristic 
modes of the rotating tube the same as those of a comparable stationary open-ended pipe?  Are the modes 
excited by air rushing past the moving end transversely or through the tube longitudinally?  What relation 
is there between the pitch of a tone and the rate of rotation?  Are the corrugations necessary?  Can the 
dynamics of the tube be quantitatively understood, even in part, as a simple application of Bernoulli's 
principle? 
 
 A cursory examination of the tube clarified immediately at least a few points.  First, there was a 
strong air current passing though the rotating tube from the stationary end toward the moving end.  By 
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grasping the tube about 30 cm from one end and rotating the remaining length, I heard the air flow and 
felt the suction as I progressively covered the stationary end with the palm of the other hand; small bits of 
tissue paper placed in my palm were sucked up into the tube and discharged from the rotating end.  
Holding the tube near the middle with both hands and causing the two ends to rotate simultaneously led to 
no tones, as there was apparently no net air flow through the tube. 
 
 Secondly, the corrugations were definitely critical to the production of sound.  Inserting into the 
tube a rolled sheet of paper that formed a smooth inner cylindrical wall eliminated the musical sounds 
without obstructing the flux of air; one then heard only the whoosh of white noise.  Moreover, it did not 
matter where the paper was inserted; whether at the moving end, stationary end, or middle, the dragon 
voice remained silent if corrugations were covered.  I found, in fact, that merely covering a small part of 
the last few corrugations of the stationary end with my thumb was sufficient to reduce the sound intensity 
greatly at any angular frequency of rotation, although it barely effected the volume of flow.  The resonant 
production of sound apparently depended sensitively on the entire structure and was severely attentuated 
by even small impediments.   
 
 Intrigued by the unexpected melodic qualities and behaviour of the dragon voice, and mindful of 
the unusual physical effects of rotational air flow in other devices I have studied (such as the vortex 
tube2), I decided to investigate this unusual toy more thoroughly with an undergraduate student upon my 
return to the U.S. The experiments3, which are simple and instructive, employ such basic procedures as 
Fourier analysis of wave forms and measurement of air speed and pressure, and easily serve as thought-
provoking and interest-generating laboratory projects in courses on general physics, waves, or acoustics.  
Indeed, these experiments are ideally suited to such purpose, for the musical toy seems to stimulate the 
curiosity of all who hear its lyrical tones.   
 
 
Dragon Notes 
 
 To answer the questions posed in 
preceding section, my student and I constructed 
an apparatus by means of which the musical 
tube could be rotated in a controlled, 
reproducible way free from centrifugal 
distortions.  As shown in Figure 2, the 
corrugated resonator was mounted on a thin 
wooden slab which was attached to a spoked 
wheel free to rotate in a vertical plane; a 
counterweight was fixed at the opposite end of 
the slab so that the center of mass of the system 
lay on the axis of the wheel.  A motor, whose 
speed could be varied by a rheostat, was placed 
in direct contact with the outer rim of the wheel.    
 

                                                
2M. P. Silverman, ‘The Vortex Tube: A Violation of the Second Law?’, Eur. J. Phys. 3 (1982) 88-92; I have written 
more comprehensively of the vortex tube and the principles of thermodynamics in my books, (a) And Yet It Moves: 
Strange Systems and Subtle Questions in Physics (Cambridge University Press, 1993) and (b) A Universe of Atoms, 
An Atom in the Universe (Springer, 2002). 
3M. P. Silverman and G. M. Cushman, ‘Voice of the Dragon: the Rotating Corrugted Resonator’, Eur. J. Phys. 10 
(1989) 298-304. 
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 The first experiments were designed to determine the frequencies of the acoustic resonances of 
the rotating tube and to compare them with the modes of an identical stationary tube mounted horizontally 
on a table and activated by the air blast of a blower, such as is commonly used in air track experiments.  
The air flux into the stationary tube was controlled by varying the distance between the mouth of the tube 
and the blower.   
 
 Assuming the dragon to be a sort of open-ended organ pipe of length L, whose vibrational modes 
have displacement antinodes (maxima) at the two ends, one would predict the spectrum of mode 
frequencies to be 
 

  fn =
nvs
2L

    !! (n = 1, 2, 3...)   (2) 

 
in which vs  is the speed of sound in air.  Actually, since the air is moving in and out of the open ends, the 
effective length !L  of the resonating air column is a little longer than L and depends on the radius R of 
the pipe.  For a pipe with two open ends (and R < 1

25 th  of a wavelength) this approximate correction is4 
 
  !L  =  L +1.22R  (3)  
 
 Figure 3 illustrates schematically how 
the musical tones were obtained and 
processed.  A microphone, aligned along the 
axis of rotation, recorded the tones at the 
different angular frequencies at which the 
wheel was spun.  These spin rates were 
measured by means of a stroboscope and 
counter/timer.  The sounds from the dragon 
were amplified and then Fourier analyzed into 
their composite frequencies by an Apple IIe 
computer.   (Most people now reading this 
essay have probably never seen so ancient a 
computer model, but it served its purpose well 
when the experiment was performed in the 
1980s.)  In preliminary studies of the 
frequency spectrum, the computer sampled 
2048 points at 50 ms per point; later a higher 
resolution (and therefore slower) program with 
a 200 ms sampling time per point was employed for more precise work.   
 
 An example of the temporal recording of sound intensity for the n = 6  acoustic mode is shown in 
Figure 4.  Theoretically—i.e. according to Eqs. (2) and (3)—the frequency of this mode should be 1350 
Hz.  The weak amplitude modulation which one sees in the figure could be produced by a non-uniform 
rotation of the motor shaft, or small distortion of the wheel, or offset of the microphone from precise 
alignment along the axis of rotation.  Such modulation can be useful by providing an independent 
confirmation of the rotation rate.  The recording in the figure was intentionally made with a slightly offset 
microphone.  However, the data that were actually used to interpret the mechanism of sound production 
were obtained with a uniformly rotating motor, undamaged wheel, and centrally placed microphone.  
 
                                                
4L. L. Beranek, Acoustics (McGraw-Hill, New York, 1954) 133. 
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 The amplitude (in the musical sense, i.e. 
sound intensity) against time plots of each mode 
were recorded at a spin rate just slightly beyond 
that for threshold production of the tone.  
Increasing the rate shifted the resonance 
frequency upward in accordance with expected 
intramode frequency shifts characteristic of organ 
pipes; a given mode would be extinguished by 
about 10 Hz beyond threshold.  Further increase 
in rotation rate then produced low-level white 
noise until the sudden onset of the next mode.  
For the stationary tube excited by a blower over 
whose air stream there was less precise control, 
the intermode transitions occurred smoothly and 
continuously, rather than discretely, with increase 
in air flux. 
 
 A composite spectrum of resonance frequencies, obtained from Fourier analysis of sound 
variations like that of Figure 4, is illustrated in Figure 5 which shows the modes n = 2, 3...6  for the 
rotating tube.  The fundamental (n = 1) mode is 
absent, for it was found difficult to produce and 
sustain this mode whether the tube was rotated by 
hand or by motor.   
 
 The resonance data (‘dragon notes’) for a 
tube of length L = 74 cm, outside radius r = 1.5 
cm, and corrugation spacing d = 0.6 cm are 
summarized in Table 1.  At the ambient 
temperature of approximately 16 °C , the speed of 
sound in air was vs  = 342 m/s.  The first column 
of the table records the theoretical resonance 
frequencies of an ideal open-ended organ pipe 
(with end correction applied); for the stated 
geometry the fundamental is 225 Hz.  In the 
second and third columns are the corresponding 
experimental frequencies of the stationary and 
rotating tubes, respectively, measured with an estimated precision of ±3  Hz.  The modal frequencies of 
the stationary tube were about 3-4% below the theoretical values, and the frequencies of the rotating tube 
were approximately 3% below those of the stationary tube.  That the resonance frequencies of the dragon 
voice, whether stationary or rotating, are lower than the comparable theoretical values of a smooth, open-
ended pipe results, I suspect, from the corrugations which give the tube an effective length longer than 
!L .   The reduction in pitch of the modes of the rotating tube below comparable values of the stationary 

tube seems to be a consequence of the lower threshold air speeds through the rotating tube, as indicated in 
the fifth and sixth columns.  I will discuss the determination of air speed and pressure difference (across 
the tube) shortly. 
 
  The initial experiments established that, for purposes of modeling, it was not unreasonable to 
regard the dragon as a kind of rotating organ pipe (although one whose length was a bit slippery to pin 
down precisely).  But what makes the dragon sing? 
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Table 1:  Threshold Mode Frequencies and Air Speeds 
  Threshold Mode Frequencies 

( ±3 Hz ) 
Air Speeds 
( ±0.3 m/s ) 

Mode n Theorya (Hz) Stationary 
Tube (Hz) 

Rotating 
Tube (Hz) 

Stationary 
Tube (m/s) 

Rotating 
Tube (m/s) 

1 225 — — — — 
2 450 432 419 6.3 5.4 
3 675 646 632 9.23 8.2 
4 900 861 839 11.8 10.7 
5 1125 1083 1051 14.9 13.3 
6 1350 1310 1263 18.9 17.1 

a Eqs. (2) and (3) with vs = 340 m/s , L = 0.74 m, R = 0.15 m 
 
 
A Bernoulli Pump 
 
 To probe the dynamics of the dragon voice further, it is necessary to examine different aspects of 
the air flow through the tube.  Despite the outward simplicity of construction, the actual pattern of air 
flow is complex, and it is useful to consider separately the hierarchy of scales at which the flow takes 
place.   The largest-scale flow, as perceived in the rest frame of the tube, is vortical, centered on the 
pivoted end and moving perpendicular to the axis of the tube with a tangential air speed ideally given by 
 
  V (s) =  2! u s  (4) 
 
where u is the rotation rate (in rev/s) and s is the distance (ranging from 0 to L) along the tube.  Next in 
scale is an axial flow through the tube produced by the rotationally induced pressure difference between 
the ends.  Finally, at the smallest scale is the internal flow over the corrugations, which becomes 
increasingly turbulent as the rotational rate and mode number increase.   
 
 The objective here is not to provide a rigorous hydrodynamical analysis of the dragon voice, but 
rather to understand some of the basic features of its behaviour at as basic a level as possible, so that 
anyone being introduced to general physics can appreciate it.   
 
 Let us consider first the question of how the resonant pressure difference across the length of the 
tube and the rotation rate are related.  For a smooth, incompressible mesoscale flow of fluid with mass 
density ρ Bernoulli's principle (with neglect of gravity) leads to the relation 
 
  p s( ) + 1

2 ! v s( )2 + 4"2u2s2#$ %& = constant  (5) 

 
in which p s( )  is the pressure and v s( )  is the axial velocity at location s along a streamline.  Air, of 
course, is a compressible fluid, but it is assumed that compression can be neglected for the range of gentle 
pressure differences created by tube rotation.  Under the same conditions, therefore, the conservation of 
mass flow through a tube of constant cross section yields a uniform axial velocity within the tube, i.e. 
v s( )  = constant for 0 !  s !  L .  It then follows that the pressure difference !p  between the stationary 
and rotating ends is given by 
  !p =  p(0)" p(L) =  2# 2$L2u2 . (6) 
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Eq. (6) is consistent with one of my earliest observations, namely that the pressure at the rotating end is 
lower than that at the stationary end (which accounts for why the bits of paper were sucked out of my 
palm).  The dragon is a kind of ‘Bernoulli pump’. 
 
 Consider next the question of how the resonant tones and the rate of rotation are related.  Here the 
microscale flow plays a critical role.  Moving past the corrugations, the air is perturbed at a frequency 
proportional to the axial air speed and inversely proportional to the corrugation spacing d.  Let us assume 
that when this frequency coincides with a resonant frequency the resulting sound is amplified by the tube.  
Thus the resonant frequency fn  of a given mode n may be related to the axial air speed vn  of the same 
mode by an expression of the form 
 

  fn = a
!1 vn
d

 (7) 

 
where a is a proportionality constant.   In the ideal case of frictionless flow, application of Eq. (5) at the 
stationary end of the tube and at a point s = L+( )  just outside the rotating end (where p 0( ) = p L+( )  and the 
streamline is assumed to be perpendicular to the tube) leads to a uniform axial speed  
 
  vn  = 2!unL = Vn L( )  (8) 
 
which is equal to the tangential speed at the rotating end.  The flow, however, is not perfectly frictionless, 
or there would be no sound.  It seems reasonable to assume, however, that vn  is proportional to Vn L( )  in 
which case one can write 
 
  vn = b

!12"unL  (9) 
 
where b is another proportionality constant.   
 
 Combining Eqs. (7) and (9) leads to the expression 
 

  fn = ab( )!1 2"L
d

#
$%

&
'(
un  (10) 

 
which predicts a linear proportionality between the threshold acoustic and rotational frequencies.   
 
 To test the preceding model of the dragon voice, in particular the relationships 
 
 

(a) V (L) =  2!uL                      [Eq. (4)] (b) 
axial air speed

acoustic frequency
= constant       [Eq. (7)]  

(c) 
rotation rate

axial air speed
= constan !t      [Eq. (9)] (d) acoustic frequency

rotation rate
= constan !!t     [Eq. (10)] 

 
 
my student and I measured the resonant acoustic frequency, rotation rate, air pressure difference across 
the tube, tangential air speed at the rotating end, and axial air speed at the fixed end for the modes n = 2 
through n = 6.   
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 The determination of air pressure and 
tangential air speed at the rotating end—which, by n 
= 6, was whipping round at over 20 m/s—posed at 
first a difficult task, but was eventually accomplished 
in the following way, as illustrated in Figure 6.  A 
narrow-bore rubber sampling tube was mounted 
along the outside of the corrugated resonator to 
sample the air stream at the rotating end.  Near the 
stationary end, the sampling tube was connected to 
an air-tight swivel joint (Aeroquip Type E-75)—a 
spring-loaded device with high-density carbon seal 
designed primarily for high-speed cooling rolls on 
printing presses, paper converters, plastic sheeting 
machinery and metal foil processing equipment.   But 
it served admirably on the dragon.  The static end of 
the swivel joint was connected to another segment of rubber tubing that attached directly to an inclined 
tube manometer filled with a non-hygroscopic fluid capable of measuring pressures up to 300 Pa with a 
resolution of 2 Pa.  The frame of the manometer was calibrated for both pressure (in Pa) and air speed (in 
m/s), the two scales being related by air speed = 2 ! pressure mass density of air( ) . 
 
 To measure the axial air speed for each mode, a short sampling tube attached to the swivel joint 
was inserted a few centimeters inside the fixed end of the resonator where the macro-scale tangential flow 
should ideally be null.  Since the inserted probe largely extinguished the resonances, and one could not 
hear the dragon voice while making measurements of internal air speed, the rotation rate for each mode 
was set close to the threshold value previously established in the determination of modal frequencies.   
 
 The outcome of all these measurements of ‘dragon breath’ are recorded in the following three 
tables.   
 
 Table 2 summarizes the pressure measurements as a function of rate of rotation.  The agreement 
of these experimental results with the predictions of Eq. (6) is very good.  For modes n = 2 and 3, with 
rotation rates under 3 rev/s, the theoretical pressure differences are within the estimated experimental 
uncertainty of pressure measurement.  As one might have expected, however, higher rotation rates led to 
greater turbulence and therefore to departures from streamline flow.  Nevertheless, for the five modes 
accessible to study, the fractional deviation btween theory and experiment was under 7%. 
 
 Table 3 compares the measurements of tangential air speed at the rotating end (i.e. effectively the 
end pressure relative to atmospheric pressure) with the theoretically expected speed based on tube length 
and rotation rate.  Agreement is again excellent at low speeds with a fractional deviation of less than 1%; 
for modes n = 5 and 6 the fractional deviation increases to 2-3% as a result of increased turbulence.  The 
measurement of tangential air speed, or pressure, provides a third method (in addition to stroboscope and 
Doppler effect) of determining the rotation rate. 
 
 Last, Table 4 recapitulates the results of pitch, rotation rate, and axial air speed measurements.  
The fifth column shows the effective constancy of the ratio of mode frequency to axial air speed; the axial 
air speed is found to be about 80% the tangential air speed for all modes sampled.  Similarly, the sixth 
column confirms the effective constancy of the ratio of axial air speed to rotation rate, and the seventh 
column establishes the effective constancy of the ratio of mode frequency to rotational frequency.  (Any 
two of these three columns are independent.)   
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Table 2:  Threshold Pressure Differences and Bernoulli's Law 

      Pressure Difference ±1 Pa( )  

Mode n Resonance 
Frequency (Hz) 

Rotation Rate 
(Rev/s) 

Experiment 
(Pa) 

Theorya 
(Pa) 

Fractional 
Deviationb (%) 

2 419 1.47 28 28.5 0.2 
3 632 2.33 73 71.6 –2.0 
4 839 3.14 134 130.0 –3.1 
5 1051 3.75 198 185.5 –6.7 
6 1263 4.40 266 255.5 –4.1 

a Eq. (6) with mass density of air ρ = 1.22 kg/m3 

b 100 ! (Theory – Experiment)/Theory 
 
 

Table 3:  Tangential Air Speeds from Pressure and Rotation 
Mode n Pressure 

Difference 
(Pa) 

Rotation Rate 
(Rev/s) 

V(L)a     
Experiment 

(m/s) 

V(L)b      
Theory      
(m/s) 

Fractional 
Deviationc (%) 

2 28 1.47 6.8 6.83 0.4 
3 73 2.33 10.9 10.83 -0.7 
4 134 3.14 14.8 14.6 -1.4 
5 198 3.75 18 17.44 -3.2 
6 266 4.4 20.9 20.46 -2.2 

a V L( ) = 2!p " = 1.28 !p    c 100 ! (Theory – Experiment)/Theory 

b V L( ) = 2!unL = 4.65un                                      
 
 

Table 4:   Proportionality Relations 
Mode n Resonance 

Frequency f   
(Hz) 

Rotation Rate u  
(Rev/s) 

Axial Air 
Speed  (m/s) aa bb abc 

2 419 1.47 5.4 2.1 1.3 2.7 
3 632 2.33 8.2 2.2 1.3 2.9 
4 839 3.14 10.7 2.1 1.4 2.9 
5 1051 3.75 13.3 2.1 1.3 2.8 
6 1263 4.40 17.1 2.3 1.2 2.8 

a Eq. (7) with a = vn fnd    c Eq.(10) with ab = 2!L d( ) un fn( )  

b Eq.(9) with b = 2!unL vn                                   
 
 

 The results, it would seem, are gratifyingly consistent with the hypotheses underlying the 
proposed mechanism of the dragon voice. 
 
 
The Dragon Causes Friction 
 
 The investigations outlined in the previous section were long completed—and indeed I had 
already returned from a second invited stay in Japan—when a letter arrived one day from a physicist in 
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California.  Unknown to my student and me, he had, himself, experimented on the rotating resonator 
some sixteen years earlier5 and enjoyed our paper about the dragon voice—although he would have 
enjoyed it more had he been referenced, which of course was understandable.  I replied politely, 
expressing our regret and pointing out that sixteen years was, after all, a long time and that most scientific 
papers, once published, ordinarily fade from communal awareness in a much briefer period than that.   
 
 The author had arrived at much the same conclusions as my student and I had, although his 
experimental methods were simpler and devilishly clever.  To ascertain the longitudinal air speed at 
which the dragon (then marketed in the U.S. as a ‘Hummer’) produced different tones, he attached it to 
his car and took it for a scientific joy ride, exciting the 11th harmonic at approximately 80 miles per hour 
(129 km/hour).  Whether the California Highway Patrol intervened or not, I cannot say, but he eventually 
devised an alternative procedure.  One end of the corrugated tube was inserted into the bottom of a 
cylindrical wastebasket, and the inverted basket was pressed into a large tub of water.   With the water as 
a piston to force air (assumed incompressible) through the resonator, he could readily determine the air 
flow through the latter from the rate of linear displacement of the basket in water.  The author had, in fact, 
made several musical instruments in this manner and enclosed with his letter a photograph from a local 
newspaper with the title ‘Professor Blows His Own Horn’, which somehow seemed quite fitting under the 
circumstances. 
 
 With other projects at hand and a lengthy stay in New Zealand impending, thoughts of the dragon 
again receded from my mind as quickly as before.  From time to time, ever since the dragon paper was 
first published, letters from interested readers continued to arrive from around the globe, although most 
merely requested reprints or posed simple questions that did not require much thought on my part.  This 
was fortunate, for the apparatus had long ago been dismantled. Then, one day, there arrived in the mail a 
request for help from a Gymnasium student in Germany that began: 
 

Dear Mr. Silverman, 
I am a German student and I have to write my research paper about the rotating 
corrugated resonator...Now I have two problems with it and it would be very 
pleasant of you, if you could send me an answer. 
 

The first problem was not difficult, but the second was puzzling indeed: 
 

...you found out that fn = a
!1vn d  and that the value of the proportionality 

constant a is more than 2 [actually, it was just about 2], but another 
article...shows that a = 1.  ... Is there anything wrong about the consideration or 
is it perhaps your measurement? 

 
 The article to which the student referred was none other than that of the physicist who had written 
me some six years earlier.  Having seen from a rapid perusal of the text that our conclusions were similar, 
and intrigued at the time more with his methods and musical instruments, I had not noted that there was, 
in fact, this curious discrepancy.  Was the resonant axial air speed actually equal to, or merely 
proportional to, the product of acoustic frequency and corrugation spacing?     
 
 Although I was in the midst of other projects, which I was reluctant to interrupt, I could not put 
the matter aside.  It was not that the distinction between the two possibilities was of earth-shaking 

                                                

5F. S. Crawford, "Singing Corrugated Pipes", Am. J. Phys. 42 (1973) 278-288. 
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importance, but rather the many years of doing physics had taught me that it is often in pursuit of small 
departures from expectation that one learns interesting things.  And so it was in this case as well. 
 
 Stimulated by the student's letter, I considered the model of the dragon voice once more, and 
thereby rediscovered what Isaac Newton had already known several centuries ago: the consequences of 
friction.  By means of simple flow experiments, Newton reached two conclusions fundamental to nearly 
everything that pertains to the mechanics of real fluids.  First, a fluid does not slide along a solid, but 
adheres to it; thus, both the tangential and normal components of flow velocity vanish at a bounding 
surface.   Second, the frictional force (shear stress) at any internal point of the flow is proportional to the 
velocity gradient (flow shear) normal to the flow. The proportionality constant µ, the coefficient of shear 
viscosity, is independent of the flow geometry. 
 
 That the flow through the corrugated resonator entailed friction was clear to me from the outset of 
the investigations, and I in fact commented on this point in the published dragon-voice paper.  I had not, 
however, taken explicit account of the following glaring implication:  If the air flow is maximum at the 
center of the tube and vanishes at the cylindrical boundary, then clearly there must be a radial velocity 
gradient; to have assumed a uniform flow was not strictly correct. 
 
 Figure 7 shows the forces acting on a 
designated cylindrical volume of air of radius r 
and length z moving at constant speed v 
through a cylindrical tube of radius R.  Since 
the volume of air is not accelerating, the force 
from unequal pressures p1, p2  on the circular 
ends is balanced by the force of the shear 
stress τ along the sides, and the condition of 
dynamic equilibrium becomes 
 

! r2 dp
dz

+ 2! r"  = 0  (11) 

 
in which Newton's law of fluid friction, applied to an axially symmetric system, is simply 
 

  ! = µ dv
dr

. (12) 

 
Combining Eqs. (11) and (12) results in a first-order differential equation for the longitudinal speed which 
can be readily integrated to yield a solution of the form 
 

  v r( ) = vm 1! r2

R2

"
#$

%
&'

 (13) 

 
with vm  the maximum speed along the tube axis (r = 0).   
 
 Now in the experiments with my student, the narrow-bore sampling tube measured in effect the 
axial air speed vm .  On the other hand, the speed inferred from riding with the dragon attached to a car, or 
pumping it with a water piston, corresponded to the average speed 
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  v = 1
!R2

v r( )
0

R

" 2!rdr . (14) 

 
Performing the integration of Eq. (14) with the velocity law (13) leads to the interesting result v = 1

2 vm .  
Thus, upon replacing vn  in Eq. (7) by the equivalent expression 2vn  and substituting the empirically 
determined value a = 2, one obtains the result fn = vn d .  The two factors of 2 have canceled—and the 
discrepancy has vanished.   
 
 Although the preceding analysis neglects the corrugations of the resonator and rigorously applies 
only to a smooth tube, it incorporates the primary effect of friction which is to generate a nonuniform 
flow.  Presumably the velocity law deriving from a more comprehensive model would resemble that of 
Eq. (13) except in the immediate vicinity of the corrugated walls.  For what it is worth, I note that if the 
power of the term r / R  were some general value k, then Eq. (14) would lead to a mean speed 

v = vm 1! 2
k + 2

"
#$

%
&'  which yields v = 1

3 vm  for k = 1 and v = 3
5 vm  for k = 3.  As k increases, the mean speed 

approaches the maximum axial speed.  Thus, for relatively low values of k the mean and maximum axial 
air speeds are sensitive to the effects of friction and their measurement can be useful in refining further 
the theoretical model.   
 
 In any event, I believe the dragon is now reasonably tamed. At the most basic level, it can be 
understood as an open-ended organ pipe blown by an air stream pumped by a rotationally induced 
pressure difference following Bernoulli's principle.  Resonant amplification of sound is initiated at a 
rotation rate for which the axial air flow is perturbed by corrugations at a frequency corresponding to one 
of the characteristic frequencies of the tube.  It is worth noting that the relationship fn = vn d , with mean 
air speed replaced by electron speed, is in fact the same expression that results from the nonrelativistic 
limit v / c! 0  of Eq. (1) for the Smith-Purcell light source. 
 
 As for the German student, I heard from him again a year later and am happy to say he did very 
well: 
 

Dear Mr. Silverman, 
...Now I am in the gap between ‘Gymnasium’ and university and finally have time to 
thank you for your help and send you my research paper.  Indeed your letter was a great 
help...Unfortunately I made a mistake...and used Bernoulli's law in a wrong way.  
Although my teacher didn't understand this law either, he recognized the mistake, which 
lead to the result that I ‘only’ got 14 out of 15 points, which was still one of the best 
results...Anyway, I thank you very much for answering my letter and giving me some tips 
for my work.  Enclosed there is a shortened version of my work (the longer version for my 
teacher contains some babble just to make it longer) I used in a special contest called 
‘Jugend forscht’ in which I won 100 DM. 
 

In its charming simplicity, the letter reminded me in various ways how much of science education 
transcends national boundaries! 
 
 Those with a questing spirit could undoubtedly find in the Voice of the Dragon further intricacies 
to explore that will enhance their understanding and enjoyment of physics.   Someday, perhaps prompted 
by other letters, I may return to the subject myself.  But for now I have had enough of dragons. 
 
 


