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  Flying High, Thinking Low—What Every Aeronaut Needs to Know 
 
  M. P. Silverman 
 
 
[Adapted from M. P. Silverman, A Universe of Atoms, An Atom in the Universe (Springer, 2002), 
initially published in The Physics Teacher (1998)] 

 
The best way of travel, however, if you aren’t in any hurry at 
all, if you don’t care where you are going, if you don’t like to 
use your legs, if you don’t want to be annoyed at all by any 
choice of directions, is in a balloon.  In a balloon, you can 
decide only when to start, and usually when to stop.  The rest 
is left entirely to nature. 

       —William Pene du Bois, The Twenty-one Balloons 
 
 
  Summary 
 
The news report of a balloonist floating in a lawnchair at 11,000 feet (far above his intended 
altitude) provided me motivation for exploring the behaviour of ideal gases and their 
implications for the thermodynamic properties of the Earth’s atmosphere.   
 
 
 As a physics teacher, I have often pointed out—to motivate a captive audience who would not 
likely have been sitting before me had not medical school or other professional school requirements 
loomed over them—that there is survival value to learning physics.  To go unarmed into a technologically 
complex world without the slightest understanding of the universal laws and fundamental principles that 
make such a world possible is to be as naked and helpless as our paleolithic ancestors must have been 
before lightning and thunder.  That, at least, was how the rhetoric went—and I cannot say with conviction 
that the majority of students found it convincing.  But here at last is an indisputable example—drawn 
from no less a bastion of journalistic integrity than the newsletter of the American Physical Society—that 
awareness of physics could convey a degree of protection against self-destructive acts of ignorance.1 
 
 The case at hand is that of the unfortunate Californian who longed to float leisurely some 10 
metres above his back yard, eating sandwiches and drinking beer, until such time as he chose to descend.  
To realise his dream, he purchased 45 weather balloons, which he inflated with helium and attached to his 
lawnchair, secured by a tether to the bumper of his jeep.  Then, having provisioned his lawnchair with the 
necessary snacks and a pellet gun with which to pop the balloons to effect his descent, the enterprising 
aeronaut released the tether—whereupon (according to the news report) he streaked like a rocket into the 
sky, reaching equilibrium, not at 30 feet as intended, but at 11,000 feet! 
 
 There he drifted cold and frightened for 14 hours until he was noticed by the pilot of a passing 
jetliner.  (Now the plight of the hapless man is in reality no laughing matter, but can you imagine what 
must have gone through the mind of the air traffic controller to whom the pilot reported having passed 
someone with a pellet gun in a lawnchair at 11,000 feet?)  Eventually rescued by the crew of a helicopter, 

                                                
11997 Darwin Award Winner, APS NEWS 7 (January 1998) 7.  The Darwin Awards, usually bestowed 
posthumously, celebrate the theory of evolution by commemorating the remains of those who have removed 
themselves from the human gene pool in spectacularly stupid ways.   (The official web site is 
http://www.darwinawards.com.) 



 2 

the physics-deficient flier was arrested for having flown his lawnchair into the air-approach corridor of 
Los Angeles International Airport.  
 
 The APS NEWS report of this adventure reached me at a most propitious moment, my physics 
class having just completed its study of fluids and begun to examine the properties of ideal gases.  There 
was a lesson—indeed several—to be learned from this adventure and, not being one to waste an 
opportunity, I promptly made it the focus of the following day’s lecture.  With the data provided in the 
news article—plus a modicum of creative modeling—a physics-savvy person can predict with adequate 
accuracy the height at which his or her lawnchair would settle (and would therefore know enough at least 
to throw in a down jacket and thermos of hot tea along with the sandwiches and beer).  There is survival 
value to the study of physics! 
 
 Let us examine this vital issue.2 
 
 
The Barometer Story—Model One 
 
 I designate by m the mass of the balloons and load and by V the volume of displaced air of 
density ! .  By Archimedes’ principle it follows that the balloons come to rest at an altitude h such that 
the total weight of the suspended objects is balanced by the buoyant force B, where 
 
  B = !Vg = mg . (1) 
 
Thus, the density of the air at h must equal the mean density (total mass/total volume) of the objects: 
 

  ! =
m
V

. (2) 

 
 Although the news report did not give the mass and volume explicitly, enough information is 
furnished to allow a not-unreasonable estimate.  First, the total mass.  Taking account of all pertinent 
items, I would assign masses as follows: 
 
    aeronaut   85 kg 
    lawnchair   20 kg 
    45 balloons   10 kg 
  six-pack of beer + pellet gun + sandwiches   5 kg 
 
for a total m = 120 kg.  The aeronaut may seem a bit portly, but then I inferred from the news report that 
he drank a lot of beer.  I have also assumed that the lawnchair is of the sturdy wooden variety and not a 
flimsy aluminium one.3   
 

                                                
2In a correction [‘But It Was Such a Good Story...’] published several months latter (March 1998), the APS NEWS  
noted that the reported incident actually occurred in 1982, that the flight lasted two hours (not fourteen), and that the 
lawnchair descended (without rescue by helicopter) onto power lines, blacking out a neighbourhood for 20 minutes.  
A collection of news reports about the incident, which came to my attention long after this paper had been 
completed, is available at the web site http://www.markbarry.com/amazing/lawnchairman.html.  There one can see 
photos of the launch and hear a recording of the radio communication between the aeronaut and his ground crew.  
There is nothing to indicate that the balloonist was frightened; indeed he was very much enjoying the flight.  
3Actually, it turned out to be the latter!  
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 Regarding the displaced volume, the report specifies only that, when fully inflated, the radius of a 
balloon exceeded two feet.  Based on a weather balloon I played with as a child, and the fact that the 
lawnchair ascended precipitously, I estimate the maximum radius to be closer to three feet.  This leads to 
a total volume V = 144 m3 .  In arriving at this value, I have assumed that, once filled to capacity at 
ground level, the balloons do not inflate further upon rising (for, to proceed otherwise, I would need 
information about the elastic properties of the balloon material, and the problem would become virtually 
intractable at the elementary level.)   
 
 From Eq. (2) and the preceding assumptions, the question then becomes:  At what height above 
ground is the air density ! = 120 kg 144 m3 = 0.83 kg/m3 ?  Recall that at ground level, where the 
pressure is  P0   = 1 atm !105  N/m , the corresponding density of the air (at room temperature T ~ 293 K) 
is, to good approximation, !0 = 1.2 kg/m3 .  Thus   ! !0 ! 0.69 . 
 
 The simplest (albeit approximate) method of attack is to apply what I call the ‘Barometer-Story 
formula’, named for a delightful essay that I habitually read to my class whenever we study fluids4.  
Written by a physics teacher (who I am quite willing to believe may have actually had the experience 
related in the essay—but this I do not know), the story describes the response of a bright student asked on 
an examination to ‘Show how it is possible to determine the height of a tall building with the aid of a 
barometer.’ 
 
 Wearied by college instructors trying to tell him what to think, the student came up with 
numerous methods—all sound but impractical and altogether intentionally irrelevant to the particular 
point the teacher wanted to test—with the consequence, of course, the he received a zero for that question.  
For example, tie a barometer to the end of a cord, swing it as a pendulum, determine the value of g at 
ground level and at the top of the building.  ‘From the difference between the two values of g,’ said the 
student, ‘the height of the building can in principle be calculated.’  You get the picture.  The essay is 
short, hilarious, and satisfying (at least to me and my class), for in the end the student triumphs.  I highly 
recommend it to physics teachers; one of my own students confided afterward that he will now go to his 
grave knowing the barometer formula, whereas, had he encountered it merely as an end-of-chapter 
exercise, he would have already forgotten it. 
 
 From the familiar form of the ideal gas equation of state 
 
  PV = nRT  (3) 
 
(with temperature T expressed in Kelvin), the number of moles per volume ( n V ) can be readily 
eliminated in favour of the gas density to yield 
 
  ! = MP / RT  (4) 
 
in which M is the formula or molar mass (traditionally termed the molecular ‘weight’, although this is a 
misnomer.)   For air, with an approximate composition (accurate enough for our purposes) of 75% N2 and 
25% O2, the gramme molecular weight is M ~ 29 g.  R, the universal gas constant, is 8.2 J/mol-K.   
 
 If we assume for the present that the temperature of the atmosphere is constant (i.e. independent 
of height), it follows from Eq. (4) that the density is linearly proportional to pressure and therefore  
                                                
4Alexander Calandra, The Barometer Story:  Angels on a Pin, reprinted in The Shape of This Century:  Readings 
from the Disciplines, ed. by D. W. Rigden and S. S. Waugh (Harcourt Brace Jovanovich, New York, 1990) 343-344. 
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!(h)
!0

=
P(h)
P0

. (5) 

 
The difference in air pressure between ground level and height h is simply the weight of a column of air 
of length h and unit cross-sectional area, or 
 
  P(h) = P0 ! "0gh  (6) 
 
if, as an additional approximation, I now take the air to be incompressible.  [Eq. (6) is the pressure-height 
relation that the physics teacher sought from the recalcitrant student in the Barometer Story.] 
 
 Strictly speaking, Eqs. (5) and (6) are inconsistent with one another, for the density of the gas 
cannot both change and be constant in the same problem.  However, since the variation in density is 
already accounted for in (5), it is not too crude an approximation over a sufficiently small change in 
altitude to assume constant density for the evaluation of P(h) .  How small is sufficiently small?  With 
insertion of Eq. (6) into Eq. (5), the resulting expression itself suggests an answer: 
 

  !(h) ~ !0 1"
!0gh
P0

#
$%

&
'(
= !0 1"

h
h0

#
$%

&
'(

. (7) 

 
  The approximation should be valid for altitudes low compared with the characteristic height 
 

  h0 !
P0

"0g
~ 8600 m . (8) 

 
I mention, in anticipation of what is to follow, that Eq. (7) is in fact a series expansion to first order in 
h / h0  of the exact expression for the density variation of an isothermal atmosphere. 
 
 Substitution of Eq. (7) into Eq. (5) leads to 
 

  h = h0 1! "
"0

#
$%

&
'(
 ~ 2700 m ~ 8800 feet  (9) 

 
as the equilibrium height of the lawnchair.  This is somewhat lower than the reported height, but then we 
did not have to work too hard to get the answer—and in any event the outcome is orders of magnitude 
beyond what the aeronaut thought his elevation would be based on no quantitative reasoning at all. 
 
 But we can work a little harder and do a little better. 
 
 
The Isothermal Atmosphere—Model Two 
 
 Under the previous assumption that the temperature of the air remains constant (let us say at room 
temperature T = 293 K), it is not difficult to derive the exact variation of density !  with altitude h.  
Figure 1 shows the pertinent dynamical details.  A cylindrical plug of gas of cross section A and height 
!z  remains in static equilibrium if the upward force of the air, P(z)A , on the bottom of the plug balances 



 5 

the sum of the downward force of air, P(z + !z)A , on the top of 
the plug and the downward force of gravity, !g"z , at the centre 
of mass of the plug, leading to the well-known barometric 
equation 
 

 !"g = P(z + #z)! P(z)
#z

  #z$0% $%%   dP
dz

. (10) 

 
Replacing pressure P in Eq. (10) by the expression (4) for 
density !  leads to the equation 
 

 
d!
dz

 = " Mg
RT

#
$%

&
'(
! = " !

h0

 (11) 

 
or equivalently 
 

 
d!
!

 = d ln! =  " dz
h0

 (12) 

 
which is readily integrated between z = 0  and z = h  to yield the exponential solution 
 

  !(h) = !0e
"h/h0 . (13) 

 
Note that the characteristic height h0 = RT Mg  in Eq. (11) is precisely the same quantity as the h0  in Eq. 
(8); this readily follows from use of Eq. (4). 
 
 The exponential function arises in two different, but equivalent, ways:  (a) as the solution to a 
differential equation whenever the variation in a quantity is proportional to the remaining quantity, e.g. 
d! " !  in Eq. (12), and (b) as the limit  
 

  ex = Lim
n!"

1+ x
n

#
$%

&
'(
n

 (14) 

 
of a sequence of terms as the index n approaches infinity. Substituting into Eq. (13) the 
approximation ex ~1+ x , obtained by terminating the sequence (14) at n = 1 , generates the result, Eq. (9), 
of Model One. 
 
 From the exact solution (13), the equilibrium altitude reached by the aeronaut is found to be 
 

  h = h0 ln V!0

m
"
#$

%
&'
 ~ 3100  m ~ 10, 300  feet  (15) 

 
which lies quite close to the 11,000-ft altitude reported in the news article. 
 
 However, with yet more effort we can obtain an even more reliable answer.  And it is worth the 
effort, for we are about to encounter something unexpected and counterintuitive. 
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The Adiabatic Atmosphere—Model Three 
 
 Although the prediction of Eq. (15) is good, the assumption that the temperature of the Earth’s 
atmosphere remains the same at all heights is not valid.  I can recall a number of transoceanic flights in 
which the cruising altitude of the aircraft and the outside temperature were simultaneously displayed over 
the cabin entrance.  At roughly five miles high, the air temperature had fallen to approximately !20 °C .  
If the temperature varied linearly with altitude and the ground was close to +20 °C  (room temperature), 
the preceding observation would imply a rate dT dz  of about !8 °C/mile  or !5 °C/km .  This is actually 
very close to the linear variation of !6.5 °C/km  recorded by atmospheric scientists over the approximate 
12 to 16 km extent of the troposphere, the lowest layer of Earth’s envelope of air.5 
 
 Since the height of the troposphere greatly exceeds the reported equilibrium altitude of the 
aeronaut, let us adopt the constant rate dT dz = !6.5 °C/km and explore the consequences of a model 
with linear variation in temperature. (The reason for designating this an ‘adiabatic atmosphere’ will be 
made clear shortly.)   Since it is often useful to work with dimensionless ratios when solving a problem, I 
will introduce a second characteristic height z0  defined by the temperature-altitude relation 
 

  T (z) = T0 1! z
z0

"
#$

%
&'

 (16) 

 
with T0  the temperature (293 K) at ground level.  From the requirement that dT dz = !T0 z0  = 
!6.5 °C/km , it follows that z0  ~ 45,000 m. 
 
 Substitution of Eq. (16) into the barometric equation (11) leads to a differential equation 
   

  d!
!

= d ln! = "
1
h0

"
1
z0

#
$%

&
'(
z0dz
z0 " z

 (17) 

 
which at first glance may seem complicated, but in reality is quite straightforward to integrate, for it 
involves the exact differential of a natural logarithm on both sides.  Note, too, that if we let z0  increase 
without bound, the atmosphere again becomes isothermal [see Eq. (16)], and the right-hand side of Eq. 
(17) reduces to the defining relation, Eq. (12), of Model Two.  For finite z0 , however, integration of (17) 
from z = 0  to z = h  yields a power-law expression 
 

  ! = !0 1" h
z0

#
$%

&
'(

z0
h0

"1

. (18) 

 
 Although the mathematical forms of solutions (18) and (13) are outwardly quite dissimilar, their 
kinship becomes apparent when the representation of an exponential as a limiting process [Eq. (14)] is 

                                                
5M. Neiburger, J. G. Edinger, and W. D. Bonner, Understanding Our Atmospheric Environment (W. H. Freeman, 
San Francisco, 1973) 27; A. Maton et al. Exploring Earth Science 2nd Edition (Prentice-Hall, Needham MA, 1997) 
193. 
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again recalled.  If the parenthetical expression on the right side of Eq. (18) were recast as 1! h0
z0

h
h0

"
#$

%
&'

z0
h0

!1

, 

then it would have the approximate value of e
!h/h0  if z0 h0  were sufficiently large so that –1 in the 

exponent could be neglected.  For the parameters pertinent to our problem, the actual value of this ratio is  
 

  
z0

h0

 = Mg
R | dT / dz |

 ~ 5.3  (19) 

 
and is independent of the choice of ground-level temperature T0 . 
   
 As our final estimate of the aeronaut’s altitude h, the inversion of Eq. (18) leads to6 
 

  h = z0 1! m
"0V

#
$%

&
'(

1
(z0 /h0 )!1

#

$

%
%

&

'

(
(
 ~ 3700 m ~ 12,100 feet  (20) 

 
which also accords well with the reported facts (and is probably closer to the true altitude if our 
assumptions regarding m and V are accurate).   
 
 For purposes of comparison, Figure 2 illustrates the variation in air density with altitude for both 
the isothermal and adiabatic atmospheres. 
 
 But something does not seem quite 
right here.  Look at the numerical outcome in 
the preceding equation.  It is larger than the 
estimate derived from Eq. (15) for an 
isothermal atmosphere.  Yet the air 
temperature is now falling with altitude.  
Should we not expect the density of colder air 
to be greater than that of warmer air—and 
therefore the aeronaut to level off at a lower 
altitude than if the atmosphere remained at 
room temperature all the way up?  This 
curious feature is brought out strikingly in 
Figure 2.  At any fixed value of the relative air 
density ! / !0 , the linear-temperature curve 
lies to the right of the constant-temperature 
curve—i.e. at greater altitude—over the entire 
extent of the troposphere (~ 0 to 15 km).   
 
 There is no calculational error.  A 
cursory examination of the barometric 
equation of motion shows the resulting 
                                                
6 Eq. (20) corrects a typographical error in the 
corresponding Eq. (16) of the article published in The 
Physics Teacher. 
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behaviour to be indeed possible.  Since P ! "T , the derivative dP / dz  in the barometric equation (10) 
leads to two terms:  one, deriving from d! / dz , reduces the air density with increasing altitude, but the 
other term, arising from dT / dz , carries the opposite sign and thereby causes the density to fall off at a 
slower rate than that of the isothermal atmosphere.  It is these two opposing actions that lead to the 

coefficient 
1
h0

!
1
z0

 in Eq. (17).  But how can that be?  What went awry? 

 
 Nothing went awry.  Rather, we have rediscovered a seminal property of air—indeed of any 
fluid—heated from below:  it rises (and sometimes in startling ways).  A graphic example of this 
behaviour, first explained by Lord Rayleigh7 and today still a subject of intensive investigation, is the 
Rayleigh-Bénard effect, the self-organisation of convection cells within a short column of fluid confined 
between two planar barriers, the lower maintained at the greater temperature.   Earth’s atmosphere 
provides another example, less startling perhaps than the phenomenon studied by Bénard and Rayleigh, 
but no less interesting—and certainly far more significant in its overall impact on all of us.  It is this 
convective flow in the atmosphere that bathes us in sea breezes by day and land breezes by night and 
rattles us unnervingly with atmospheric turbulence during our air flights. 
 
 Were the atmosphere left unperturbed for a sufficiently long time, it would eventually assume the 
quiescent state of thermal equilibrium, the density of each gas component falling exponentially with 
height.  But such is not the case.  Incessantly agitated under a negative temperature gradient, air is 
continually transferred from one part of the atmosphere to another.  However—and this is the crucial 
feature—since the conduction of heat in gases is very slow, the atmosphere is never permitted to assume 
the equilibrium distribution we have discussed in the Model Two.  Instead, before an element of gas 
newly arrived at some location can adjust its temperature to that of its surroundings, it is again moved 
away.  The distribution of the atmosphere, therefore, is determined by the condition that an element of 
gas, on being moved from one place to another, takes up the requisite pressure and volume in its new 
position without there being any loss or gain of heat by conduction.8 
 
 The foregoing process by which a quantity of gas undergoes a change in pressure, volume, and 
temperature without exchanging heat with the environment is termed ‘adiabatic’ from the Greek word for 
‘impassable’. An ideal gas undergoing an adiabatic process satisfies the constitutive relations 
 
  PV !  = constant  (21) 
 
  T!" #1 = constant  (22) 
 
in which ! = cP cV  is the ratio of the molar specific heat at constant pressure to the molar specific heat at 
constant volume.  For a diatomic gas (or mixture of diatomic gases like air) !  is expected on the basis of 
the equipartition theorem of classical physics to be ! = 7

5 = 1.4 .  According to the equipartition theorem a 
molecule in equilibrium with a thermal reservoir at temperature T has a mean molar energy 1

2 RT  for each 
dynamical degree of freedom.  Thus, for a diatomic molecule with 5 degrees of freedom (3 degrees of translation 
along the three coordinate axes; 2 degrees of rotation about two axes perpendicular to the molecule), the mean 
internal energy is 52 RT  and therefore cV = 5

2 R  and cP = cV + R = 7
2 R , from which follows ! = 7

5 .  It is assumed 

                                                
7Lord Rayleigh, On Convection Currents in a Horizontal Layer of Fluid, when the Higher Temperature is on the 
Under Side, Philosophical Magazine 32, Series 6, 529-546 (1916), reprinted in B. Saltzman, Theory of Thermal 
Convection (Dover, New York, 1962) pp. 3-20 
8Sir James Jeans, The Dynamical Theory of Gases (Dover, New York, 1954) 335. 
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that the temperature is sufficiently low that vibrational degrees of freedom are unexcited; otherwise, the numerical 
value of !  would be lower than 1.4.   The equipartition theorem is a classical theorem that breaks down when the 
mean thermal energy per molecule is comparable to the quanta of energy for transitions to excited states. 
 
 
 Had we known to begin with the adiabatic relations (together with the ideal gas equation of state 
and the barometric equation), we could have deduced the linear dependence of temperature on altitude 
rather than adopt it as an empirical fact.  By casting the resulting expressions into forms comparable to 
Eqs. (16) and (18), we could then relate the heat capacity ratio !  to our ratio of characteristic heights 
z0 h0  and thereby predict the rate of temperature fall through the chain of connections 
 

  
z0

h0

 = Mg
R | dT / dz |

 = !
! "1

 = cP
R

 (23) 

 

  
dT
dz

 = !
g

(cP / M )
 = !

gravitational field strength
heat capacity per unit mass

. (24) 

 
Insertion of the classical value ! = 1.4  into Eq. (23) gives dT / dz = !10 °C/km , which is not too far 
from the actual rate of !6.5 °C/km .9  The discrepancy may be attributable to the fact that in reality 
Earth’s atmosphere is an extremely complex system, affected in no small way by the irregularities of the 
planet’s surface and the reflectivity of the clouds. 
 
 It is precisely such complexity, however, that makes the physical world so interesting and 
therefore the physicist’s capacity to interpret it in terms of a few basic laws and simple models so 
remarkable.  The predicament of our aeronaut aside, perhaps it is not so much the survival value of 
physics that is worth emphasising after all, but the intrinsic pleasure and satisfaction that comes with 
understanding. 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
9A more direct way to arrive at Eq. (24) is to use the enthalpic form of the First Law of Thermodynamics 
dQ = cPdT !VdP  for a differential quantity of heat absorbed by an ideal gas.  In the case of an adiabatic process 
dQ = 0 , and the preceding equation, together with the barometric equation, yields dT / dz  immediately.  


